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ABSTRACT

We derive explicit formulas for the second moments of the
absorption time matrices in the Markov Renewal Branching process.
These formulas may easily be computationally implemented and are
useful in the iterative computation of the semi-Markov matrices,
which give the distributions of the duration and of the number
of customers served in a busy period of a great variety of

a complex queueing models.
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I. Introduction

This note is a sequel to [1], where we discussed the moments
of semi-Markov matrices associated with the time till extinction
in a Markov renewal branching process. We refer to.[1] for the
motivation and a general description of the problem under
discussion. In queueing theory, the semi-Markov matrices of
interest are related to the number of customers served and to
the time duration of the busy period. See e.g. [2].

Recalling only the most essential definitions from [1], we
consider a sequence {An(~)} of substochastic semi-Markov matrices,
with Laplace-Stieltjes transforms {A;(s)}, such that the sum

1) Rix) =

n

: AL(x), x20,

n o™ 8

is an irreducible, regular stochastic semi-Markov matrix. The
invariant probability vector of A=A(+=) is denoted by m and the

vector B8 is defined by

(2) =L nA e,

where An=ﬁn(+m), for n>0, and e=(1,1,...,1)".
Throughout this paper, we shall assume that the irreducibility

assumptions, stated in [1], hold and also that
(3) »p = xp<l.

There then exists a unique sequence of substochastic semi-

Markov matrices {én(-)}, such that the transform matrix




(4) G*(z,s) =

Zn fw e'SX dén(x)a
n

0

™ g
-

defined for 0s<z<l, s20, satisfies the nonlinear matrix equation

(5)  G*(z,s) = zr AX(s)[6%(z,5)] .
n=0

Moreover the matrix G=G*(1,0)= = én(+w), is a positive
n=1

stochastic matrix, which satisfies

t6) &= 35 Ko

The invariant probability vector of G is denoted by g and

the matrix G is defined by éij=gi’ for 1<i,j<m. The matrix I-G+G

is known to be nonsingular. The matrices M and N are defined by

(7) M= wadZ én(x)='[g? G*(]’S)]9
0 n=1 s=0
N = 2 nd, (+e)=[ 6%(2,01,
n=1 z=1

and p=Me, v=Ne.

For future reference, we define

(8) B(1) = £ nA 8=B(1)e,

n)

3
—

n™~MB W 8
~nN

@™
—
[a ]
~
1

n(n-l)An, §2=B(2)Eo

-

C(1)=s"xdA(x)=-[3= A*(s)], g*=C(1)e,
0 s=0

2

o 2 4 d
c(2)=r dA = A% s B*=C(2)e,
(2) 9 X (x) [;;7 (S)]s=0 £ ( )g

D =

nsoxdA (x)= - &£ nA*'(0+), 6&=De,
n n n - =

10 n=1

nm™ 8

aRCaG




o

£(1) =- ¢ A;'(o+)e",
n=0

x

E(2) = A;"(o+)s".
n=0

These matrices will be assumed to be known and finite. We note

that if G is known accurately, then E(1) and E(2) can in principle

be computed, with E(1)e=g* and E(2)e=g%, serving as accuracy checks.
By routine differentiations in Equation (5) and using results

in [1], the matrices M and N are the unique solutions, respectively

to the matrix equations

£ n-1 vyaN=1-v

E(1)+s A, T G'MG ’
n=1 v=0

1

(9) M

i GvNGn-]-v

0

=
"

G+z A
n=1 "y

LI o T |

and the vectors p and v are given explicitly by

(10) (1-6+6)[1-A+G-4(p)6] s+,

(=
n

(1-G+6)[1-A+G-a(p)&] e,

b

where A(§)=diag(8],...,8m).
Powerful accuracy checks on numerical computations are

provided by the formulas
(11) gu = U-o)qz_*, gv = (1-p)" ",

The pur, .e¢ of this paper is as follows. I~ <ussing the
steady-state probability distributions of a variety of queueing
models, it turns out that only the vectors g, u and v and the
matrix G are of essential computational importance. Even for

matrices An of fairly high order, the amount of computation is




small to moderate.

In contrast, the numerical computation of the semi-Markov
matrix G(x)= ; én(x), for x>0, and of the sequence {Gn(+w)} is
a major task?-]The most promising algorithms involve iterations
of the nonlinear operator, corresponding to the inverted form of
Equation (5).

Such algorithms require however that a priori cut-off points
on the tails of the probability distributions be computed. With
information on the second moments of G(-:) and {Gn(w)} available,
we can limit computation to terms up to three or four standard

deviations beyond the mean. We therefore proceed to a discussion

of the matrices M2 and N2’ defined by

2
o 2 d
(12) M, = s x"dG(x) = [——? G*(1,s)],
2 0 ds s=0
T n(n-118. (re) = T2, B¥a 001
N, = I n{n- to) = Z .
2 n=2 0 g;? z=1

and the vectors 52=Mzg, and 32=Nzg.

Although the derivation of explicit formulas for the latter
is primarily a matter of calculation, the intermediate steps are
sufficiently involved that it appears worthwhile to have the

resulting expressions available in the literature.

II. The Matrices M2 and N2'

By routine differentiations in Formula (5), we obtain the

equations

RS ne
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(13) M.- 1 A n51 g¥n. 6" Y. -
2 n=1 n\)=0 2 i
% n-1 vyah=-1-
E(2)-2 ¢ A;'(o+) I GVME b
n=1 v=0
© n-2 v
2 Jolnich 48 T i
n=2 v=0 r=0
and
© n-] {
(14} Moz A F aiNet YL |
g R 2 ,
n=1 "v=0

@ n-2 v
2N-2642 T A I % T
n=2 "v=0 r=0
For practical purposes, the explicit expressions, given below,
for u, and v, will be sufficient. The numerical solution of

Equations (13) and (14) is feasible, whenever the right-hand sides

can be computed accurately. The following results convey useful ,

information on such computation.

Lemma 1

For any square matrix X, we have

n-2 v SV
(15) 1im ™2 & 5 a"xe""Txe""2°V = GxExé = (gxe)%s.
n-+e v=0 r=0
Proof
n-1 Vyah=1=v
Writing Un= L G XG , and noting that by interchanging
\)‘:0 {
the order of the summations, we obtain §
{
n-2 v n-2 |
(1) 1, % . & ATXe TRV . sevpy. - 44 |
v=0 r=0 v=0 ey ;
so that |
-2
L SRR ) " n-v .v -1
12 '» In™? vEO = o X(n-v) ST

e — . o — “‘4



In [1], Thm 4, we proved that n']Un+(ng)é. Using this
result and repeating verbatim the same proof for the expression

in (17), the stated result follows.

Lemma 1 shows that the truncation error at the index n=K
4 L e T et
in the infinite sum £ A 3 I G'MGV "Mg V, is approximately
n=2 " v=0 r=0

equal to

(18) (1-5)7%(xe%)® & n?a .
n=K+1

Similar error estimates apply to the other infinite series.
The matrices Un and Tn can be computed recursively for use in

the computation of the right hand sides. We have the recurrence

relations:

(19)  u,=x, un=xG"“+Gu

=y? -
TZ-X s Tn—XUn

] ? for n22,

+GT s for n>3.

-2 n-1

ITI. The Vectors u, and Voo

Theorem 1
The vectors 1P} and v, are given by
(20) g, = 2[(gE)I-M](I-G+é)']E +
(1-6+8)[1-A+G-2(8)81 " (g3+2(gu) s+ (au) e,
+2[C(1)+(gu)B(1)-(gu) 11(1-6+8) "),

and




7

(21) v, =2[(1-p) T 1-NI(1-6+8) " Tur2(1-p) Tou +
(1-6+8)[1-A+E-a(8)81 7 ((1-0) %8, +

2(1-p)'][a(1)-oI](I-G+é)"3}.

Proof
The proofs of both formulas are similar, so we shall only
give the main computational steps of the proof of (20). Several
non-obvious steps are involved.
Multiplying the left hand side of (13) on the right by e,
we obtain:

n-1

1

(22} -uos ]An 22

n

e g

o

6%, = pa~-LA-E+alg)Bl(1-6+E€)
N =

v=0

= [1-A+8-2(8)B1(1-6+8) ' u,.

Multiplying the terms in the right hand side by e, the first term
clearly yields ﬁ;. The second term yields
n-1

At (o+) £ BTy =
1 v=0

{23) 2
n

TSR

2[A* ' (0+)- 5 Ax'(0+)G"+ £ nA*'(0+)6]1(1-G+&) 'y

n=0 n=1

1

=2[E(1)-C(1)1(1-G+6) ™ 'u-2(qu)s.

The third term is more involved. We obtain

= - v
(28) 2zt A ¢ 3$G6'ME" Ty -
=0 r=0

A%
L e G Y G
0 r=0

o n-1 A 0y ® n-1 e s}
2 £ A, £ G'M(I-G+6) 'y-2 1 A £ G MG V(1-6G+4G) 'y

1" v=0 n=1 "v=0

|

S



,...' A A s bmn

The first two of the latter terms simplify to

(25) 2[A-G+a(B)&](1-6+8) "M(1-G+E) 'y
2[M-E(1)](1-6+8) 1w = 2E(1) (1-6+8) "'y

2L 1-A+E-8(8)81(1-G+E) TM(1-6+8) Ty,

The last term in (24) yields

o n-2 v v
(26) 2(gu) t R % LGy =
n=2 v=0 r=0
® n-2 : S b
2(gw) A& [1-6" 14 (v41)81(1-6+8) "y,
n=2 v=0
but
@ n‘2[ \)+] )_, e A L A
(27) Z A t [I-G #(y¥1)6] = I B R
n=2 n \)=0 i n—_-2 n n=2 n
= ~ N ~y-1,1 X
ty I n(n-l)AnG = B(1)-[A-G+a(B)GI(I-6+G) "+5(8,)G,

n=2
so that the expression in (26) becomes

(28) (gu)®8,+2(qu)[B(1)-11(1-6+6) "y

+2(gu) [1-A+G-a(g)&](1-6+G) 2.

After collecting terms and multiplying by the inverse of the

coefficient matrix in Formula (22), we obtain the explicit

formula (20).

Corollary 1

In the M/SM/1 queue with arrival rate A and service time semi-

Markov matrix A(-), we have the simplified formulas




(29) p=rng*, B(1)=2C(1), B(2)=2%c(2),
: 2 E
B=)g*, B,=2"B3 g
PR 1 v-lp=e,

w2200 o (1-0) T 1-MI(1-648) Ty +

(1-G+6)[1-A+G-2a(*)8] 7" 1(1-0) %85 +

20051 PLCF) <1 BT GHET 1),

v,720(1-p) " 1-NT(1-G+8) Tur2(1-p) Toy +
(1-6+6)E1-A+B-2Al5* )€1 e (1=p) 212

1

85 +
ot et lal l ety

vl.

Remark

In the scalar case (M/G/1), where A=G=G=1, Ag*=p, v=(]~p)'],
u=l-‘p(]-p)‘ls the latter two formulas reduce to the classical
formulas.

)—3

up=(1-0) "8%, vo=(1-p) "278%5+2p(1-p

IV. Numerical Computation

Assuming the required moment matrices, other than E(1) and
E(2), defined in (8) are known, the first step is the numecical
computation of G. As discussed in [1], we found that successive

substitutions in the equation

(30) G = (I—A])-] 1 AGY,
0 AY]
]

v
Y

MK B

starting with G=0, converge rapidly except for p very close to one.
The evaluation of G and E(1) is routine. Iu is not necessary

to compute the inverse of (I-G+é), since only the vectors




e I

10

1

(1-G+&) ™'y and (1-G+&) 'y are needed and by Formula (10), it is

clear that these can be evaluated without inverting the matrix
1-G+6.

The main computational effort goes into the evaluation of
the matrices M and N. As shown in [1], the equations (9) are each
equivalent to systems of m2 linear equations in m2 unknowns.
Except for very small values of m, it is impractical however to
compute the required coefficient matrix.

We have successfully computed matrices M and N for m as large
as thirty, without expending excessive computer times by straight-
forward successive substitutions and by using the first of the
recurrence relations in (19) to compute the required matrices Up-

The speed of convergence can be substantially improved by
writing the equations (9) in the form
1 ® n-2

e B TR e

(31) Xx=[I-
= n=2 v=0

n=1
with X=M, Y=E(1) and X=N, Y=G, respectively.
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